EBSDpython code
Public Member Functions | List of all members
ebsd_Symmetry.Symmetry Class Reference

Detailed Description

Material symmetry class; this class only stores lattice: cubic, hexagonal.

Public Member Functions

def __cmp__ (self, other)
 
def __copy__ (self)
 
def __eq__ (self, other)
 
def __init__ (self, symmetry=None)
 
def __neq__ (self, other)
 
def __repr__ (self)
 
MATERIAL SPECIFIC ROUTINES
def symmetryQuats (self, who=[])
 List of symmetry operations as quaternions. More...
 
def unitCell (self)
 Return unit cell edges. More...
 
def equivalentQuaternions (self, quaternion, who=[])
 List of symmetrically equivalent quaternions based on own symmetry. More...
 
def inFZ (self, R)
 Check whether given Rodrigues vector falls into fundamental zone of own symmetry. More...
 
def inDisorientationSST (self, R)
 Check whether given Rodrigues vector (of misorientation) falls into standard stereographic triangle of own symmetry. More...
 
def inSST (self, vector, proper=False, color=False)
 Check whether given vector falls into standard stereographic triangle of own symmetry. More...
 
Math routines to convert between HKL, XY, RGB
def xyToHKL (self, inPlane)
 convert xy (coordinates in projection plane (-1<x<1,-1<y<1)) -> hkl More...
 
def standardTriangle (self, fileName=None, show=True, stepSize=0.01)
 Plot standard triangle with background, discrete points in color, save to file, add text. More...
 

Constructor & Destructor Documentation

◆ __init__()

def ebsd_Symmetry.Symmetry.__init__ (   self,
  symmetry = None 
)

Member Function Documentation

◆ __cmp__()

def ebsd_Symmetry.Symmetry.__cmp__ (   self,
  other 
)

◆ __copy__()

def ebsd_Symmetry.Symmetry.__copy__ (   self)

◆ __eq__()

def ebsd_Symmetry.Symmetry.__eq__ (   self,
  other 
)

◆ __neq__()

def ebsd_Symmetry.Symmetry.__neq__ (   self,
  other 
)

◆ __repr__()

def ebsd_Symmetry.Symmetry.__repr__ (   self)

◆ equivalentQuaternions()

def ebsd_Symmetry.Symmetry.equivalentQuaternions (   self,
  quaternion,
  who = [] 
)

List of symmetrically equivalent quaternions based on own symmetry.

◆ inDisorientationSST()

def ebsd_Symmetry.Symmetry.inDisorientationSST (   self,
  R 
)

Check whether given Rodrigues vector (of misorientation) falls into standard stereographic triangle of own symmetry.

Determination of disorientations follow the work of A. Heinz and P. Neumann: Representation of Orientation and Disorientation Data for Cubic, Hexagonal, Tetragonal and Orthorhombic Crystals Acta Cryst. (1991). A47, 780-789

◆ inFZ()

def ebsd_Symmetry.Symmetry.inFZ (   self,
  R 
)

Check whether given Rodrigues vector falls into fundamental zone of own symmetry.

◆ inSST()

def ebsd_Symmetry.Symmetry.inSST (   self,
  vector,
  proper = False,
  color = False 
)

Check whether given vector falls into standard stereographic triangle of own symmetry.

Parameters
vectorhkl vector tested/converted to rbg; considers only this vector, no crystal orientation
properconsiders only vectors with z >= 0, hence uses two neighboring SSTs to determine if in SST. i.e. allows more positive results, rgb-value does not depend on this
colorif true, return also color
Returns
whether in SST
(if requested) inverse pole figure color if in SST in RGB values

◆ standardTriangle()

def ebsd_Symmetry.Symmetry.standardTriangle (   self,
  fileName = None,
  show = True,
  stepSize = 0.01 
)

Plot standard triangle with background, discrete points in color, save to file, add text.

Corner points of triangle

  • x=0.41421 =sqrt(2)-1 -> [110] corner at (0.41421,0)
  • [111] corner at (0.366025403784,0.366025403784)
Parameters
fileNamesave to file
showTrue [default] shows figure, else not
stepSizeplotting accuracy: lower value=better quality

◆ symmetryQuats()

def ebsd_Symmetry.Symmetry.symmetryQuats (   self,
  who = [] 
)

List of symmetry operations as quaternions.

◆ unitCell()

def ebsd_Symmetry.Symmetry.unitCell (   self)

Return unit cell edges.

◆ xyToHKL()

def ebsd_Symmetry.Symmetry.xyToHKL (   self,
  inPlane 
)

convert xy (coordinates in projection plane (-1<x<1,-1<y<1)) -> hkl

required for plotting the standardTriangle

Theory
  • unscaled vector (x; y; 1) has to be scaled by l such that the scaled vector - unit_vector_Z has the unit length
  • scaled: ( xl; yl; l)
  • |(xl; yl; l-1)| =!=1
  • -> l(x^2+y^2+1)=2 #2 is a random number
  • hkl = scaled - unit_vector_Z = (xl; yl; l-1)
Parameters
inPlanevector coordinates in the plane of the stereograhic projection plane
Returns
hkl vector

The documentation for this class was generated from the following file: